University of Melbourne creates world’s most powerful X-ray machine

A new X-ray laboratory at the University of Melbourne houses the most powerful X-ray machine ever developed.

University of Melbourne X-ray
Study science at the University of Melbourne
Professor Christopher Chantler and his team at the School of Physics have built a new rotating anode source that turns ordinary X-rays into super X-rays.

After the synchrotron, which is a different type of technology, this is one of the most powerful scientific tools to investigate atoms.

“This super X-ray machine gives us the capability of mapping the energies of the atom previously inaccessible and unseen by other apparatus,” said Professor Chantler.

The device is already of interest to chemical, biological and physical scientists as it can enhance investigations of chemical environments, the interaction of light with matter, and link to studies of complex mineral formation in the earth’s crust.

The research team tested the super X-rays on copper atoms and demonstrated unprecedented levels of accuracy at the atomic level that has never been seen before.

Professor Chantler and his team recently published the copper atom data in the Journal of Physics B.

The data shed new light on the theoretical calculations and theoretical electron scattering models.

“This copper atom data also means we have provided new insights into calibrating less powerful X-ray machines with much higher accuracy.”

The new X-ray laboratory will train a new generation of students as a stepping-stone for exciting opportunities at synchrotrons and free electron lasers.

Dr Sobott, one of the awardees of the prestigious Bill Gates Humanitarian award winner said, ‘The real value of the rotating anode is that it opens up new scientific experimentation. This is particularly the case for high statistics, high precision measurements required by our group as we strive to probe the nature of matter.”

“We are thrilled that the super X-ray has industrial representatives from scientific instruments makers and imaging companies interested about future opportunities for commercial development,” said Professor Chantler.

About the Melbourne School of Physics

The School of Physics at the University of Melbourne is one of the largest and best funded physics departments in Australia. The school has world-class research programs in astrophysics, optics, condensed matter physics and particle physics and the school hosts the ARC Centre of Excellence in Coherent X-Ray Science, the ARC Centre of Excellence in Particle Physics at the Terascale and the Melbourne nodes of the ARC Centre of Excellence for Quantum Computation and Communication Technology and the ARC Centre of Excellence for All-Sky Astrophysics. The school also plays a major role in the Australian Synchrotron research program. The School of Physics within the Faculty of Science is well established and is internationally respected for its research excellence, broad-based undergraduate courses, and a challenging and rewarding postgraduate experience.

The school, one of eight main departments within the Faculty of Science, comprises approximately 20 teaching and research staff, 60 research-only staff, more than 95 postgraduate students, 72 associates supported by 34 professional staff.


Popular posts from this blog

University of Sydney is closing the veterinary void

Monash University medical student joins Antarctica expedition to inspire environmental change

New University of Melbourne student accommodation opens in the heart of Carlton